## GCE Examinations

## Advanced Subsidiary / Advanced Level

## Statistics

## Module S1

## Paper E

## MARKING GUIDE


#### Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.


Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.


Written by Shaun Armstrong \& Chris Huffer

## S1 Paper E - Marking Guide

1. (a)

|  | Studio | Live | Total |
| :---: | :---: | :---: | :---: |
| Jazz | $(13)$ | 3 | $(16)$ |
| Blues | 9 | 5 | 14 |
| Total | 22 | $(8)$ | $(30)$ |

(b) $\frac{5}{30}=\frac{1}{6}$

A1
(c) $\frac{13}{22}$

M1 A1
(5)
2. (a) Discrete Uniform

B1
(b) $R=10 Q+4$

A2
(c) $\mathrm{E}(R)=(10 \times 3)+4=34$

M1 A1
$\operatorname{Var}(R)=10^{2} \times 2=200$
M1 A1
3. (a) $\mathrm{P}\left(Z<\frac{45-42}{\sqrt{18}}\right)=\mathrm{P}(Z<0.71)=0.7611 \quad \mathrm{M} 2 \mathrm{~A} 1$
(b) $\mathrm{P}\left(\frac{32-42}{\sqrt{18}}<Z<\frac{38-42}{\sqrt{18}}\right)=\mathrm{P}\left({ }^{-} 2.36<Z<^{-} 0.94\right) \quad$ M2
$=\mathrm{P}\left(Z<^{-} 0.94\right)-\mathrm{P}\left(Z<^{-} 2.36\right)=0.1736-0.0091=0.1645 \quad$ M1 A1
(c) $\mathrm{P}\left(Z<\frac{x-42}{\sqrt{18}}\right)=0.95 ; \frac{x-42}{\sqrt{18}}=1.6449 \quad$ M1 A1 $x=42+(1.6449 \times \sqrt{ } 18)=49.0 \quad$ M1 A1
4. (a) cum. freqs: $36,128,202,241,255,282,300$ M1 median $=150^{\text {th }}=40+20\left(\frac{22}{74}\right)=45.9\left[150.5^{\text {th }} \rightarrow 46.1\right] \quad$ M1 A1
(b) middle $80 \%=\mathrm{P}_{10}$ to $\mathrm{P}_{90}$

B1
$\mathrm{P}_{10}=30^{\text {th }}=20\left(\frac{30}{36}\right)=16.7\left[30.1^{\text {th }} \rightarrow 16.7\right]$
M1
$\mathrm{P}_{90}=270^{\text {th }}=200+100\left(\frac{15}{27}\right)=255.6\left[270.9^{\text {th }} \rightarrow 258.9\right]$
M1
$\therefore$ limits are 17 and 256 years
A2
(c) e.g. data v. skewed, some extremely high values doesn't affect median but increases mean significantly B2 median better, most values below the mean B1
5. (a)

| $y$ | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(Y=y)$ | 0.05 | 0.1 | 0.2 | 0.4 | 0.25 |

M1 A1
(b) $0.1+0.2=0.3$

M1 A1
(c) $\quad \sum y \mathrm{P}(y)=0+0.1+0.4+1.2+1=2.7$

M1 A1
(d) $(2 \times 2.7)+4=9.4$

M1 A1
(e) $\mathrm{E}\left(Y^{2}\right)=\sum y^{2} \mathrm{P}(y)=0+0.1+0.8+3.6+4=8.5$

M1 A1
$\operatorname{Var}(Y)=8.5-(2.7)^{2}=1.21$
M1 A1
(12)
6. (a) $0.45 \times 0.6=0.27$

M1 A1
M2 A1

M2
A1
(d) $2001^{\text {st }}$ time, $1202^{\text {nd }}$ time, $803^{\text {rd }}$ time
no. expected to pass $=(200 \times 0.55)+(120 \times 0.6)+(80 \times 0.4)$

$$
=110+72+32=214
$$

A1
M2
A1
(12)
7.

[^0]M1 A1 (17)

## Performance Record - S1 Paper E

| Question no. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Topic(s) | probability | $\begin{array}{\|l} \hline \begin{array}{l} \text { discrete } \\ \text { uniform } \\ \text { dist. } \end{array} \end{array}$ | $\begin{array}{\|l\|} \hline \text { normal } \end{array}$ dist. | interpol'n, inter <br> percentile <br> range | $\begin{aligned} & \text { discrete } \end{aligned}$ | probability | scatter diagram, regression |  |
| Marks | 5 | 7 | 11 | 11 | 12 | 12 | 17 | 75 |
| Student |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |


[^0]:    (a) $n$
    
    (b) $S_{h n}=17204-\frac{180 \times 875}{9}={ }^{-} 296$

    M1
    $S_{h h}=3660-\frac{180^{2}}{9}=60$ M1
    $b=\frac{-296}{60}=-4.9333$
    M1 A1
    $a=\frac{875}{9}-\left[-4.9333 \times \frac{180}{9}\right]=195.888$
    M1 A1
    $h=195.9-4.93 h$
    A1
    (c) no. of clinches decreases by 4.93 per hour awake

    B1
    (d) e.g. ability likely to be roughly constant during normal waking hours only decreases when awake for longer than usual

    B2
    (e) $195.9-4.93 h=213.4-5.87 h$

    M1
    $0.94 h=17.5$; $h=18.6$ hours

